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Abstract 
In this paper our aim is to discuss the main results and properties of the fractional calculus 

like fractional integrals and derivatives of the non-integer order or arbitrary order. And 

we will also discuss about those functions which are used in fractional calculus namely 

Gamma function, Mittag-Leffer function, Agarwal function, Erdelyi’s function etc.   
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1.Introduction 
The first question that comes to mind is how the fractional calculus came into existence and the 

answer probably lies within the conversation of Leibniz and G.A. L’Hopital in the early seventeenth 

century. The things started when L’Hopital wrote a letter dated September 30, 1965 to Leibnitz 

asking him about a  particular notation that he had used in his paper for the 𝑛𝑡ℎ derivative of a 

function i.e. 
𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
   𝑜𝑟 𝐷𝑛 {𝑓(𝑥)}, 𝐷 ≡

𝑑

𝑑𝑥
  

L’Hopital wanted to know the result, when 𝑛 = 1
2⁄  means he was interested to find out the 

derivative of order 
1

2
. G.W.Leibniz wrote, prophetically, “Thus it follows that 𝑑

1

2 𝑥 will be equal to 

𝑥 √𝑑𝑥: 𝑥
2

 ,an apparent paradox, from which one day useful consequences will be drawn 

(Leibniz,1962).” In these words, by Leibniz probably the fractional calculus was born. Leibniz 

wrote another letter to J. Bernoulli and in this letter he mentioned the term derivative of the general 

order. In fact Leibniz discussed the infinite product of Wallis for 𝜋 and used the notation   𝑑
1

2 𝑦 to 

denote the derivative of order 
1

2
 [2]. In 1730, L.Euler mentioned in his work that when 𝑛 is a positive 

integer, the ratio of 𝑑𝑛𝑝, 𝑝 being a function of 𝑥 and 𝑑𝑥𝑛 can always be expressed algebraically. 

Even he suggested to use the interpolation series if 𝑛 is fraction. But if  𝑛 is a positive integer then 

𝑑𝑛 can be found by continued differentiation. In 1772, J.L. Lagrange had developed the law of 

exponent (indices) for differential operators of integer orders: 

𝑑𝑚

𝑑𝑥𝑚
 

𝑑𝑛

𝑑𝑥𝑛
 𝑦   =

𝑑𝑚+𝑛

𝑑𝑥𝑚+𝑛
𝑦. 

It was very important to know when the theory of fractional calculus started that whether this law 

held true if 𝑚 𝑎𝑛𝑑 𝑛 were fractions. In 1882, P.S. Laplace wrote expressions for a derivative of 

non-integer orders by using the integrals. S.F.Lacroix developed a formula for fractional 
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differentiation for the 𝑛𝑡ℎ derivative of 𝑥𝑚  by induction. He formally obtained the derivative of 

order 
1

2
  

𝑑
1
2

𝑑𝑥
1
2

  𝑥   =   
2√𝑥

√𝜋
 

Where 𝛤 (
1

2
) = √𝜋. He obtained the above expression in the year 1819. 

In 1822, J.B.J. Fourier obtained the integral formula for the derivative of order 𝑢 which is as 

follows: 
𝑑𝑢

𝑑𝑥𝑢  𝑓(𝑥) =
1

2𝜋
  ∫ 𝑓(𝛽)𝑑𝛽 ∫ 𝑝𝑢 cos (𝑝𝑥 − 𝑝𝛽 +

𝑢𝜋

2
 ) 𝑑𝑝

+∞

−∞
,

+∞

−∞
 

where 𝑢 is any quantity i.e. positive or negative. The above result can be derived in a more suitable 

way as suggested by Liouville in the year 1835. The tautochrone (isochrone) problem was studied 

by N.H. Abel in 1823 (This paper first appear in Mag. Naturvidenkaberne) (Abel,1823). He used 

derivative of arbitrary order to solve the problem. The following is the integral 

∫ (𝑦 − 𝑡)
1
2 𝑓(𝑦)𝑑𝑡

𝑦

0

 

Abel worked with this integral. This result is considered the first application of the fractional 

calculus. 

  

1.1 A Generalization of Integer Order Calculus 

  

When we talk about any quantity which in the form of 𝑥𝑛 then easily we visualize that 𝑥 is multiply 

𝑏𝑦 𝑛 times will give the required result. In this case we  assume that 𝑛 is an integer. But the question 

is if 𝑛 is not an integer then how we will visualize it. For example visualize 3𝑒 , the answer is, it is 

difficult to visualize but its result exists i.e. 3𝑒 = 19.812990. In the same way the fractional 

derivative 
𝑑𝑒

𝑑𝑥𝑒
𝑓(𝑥) 

is not easy to visualize like 𝑥𝑛 and moreover presently does not exist. As we are aware that the real 

numbers exist between the integers but the question is does the fractional differintegrals do exist 

between conventional integer order derivatives and 𝑛 folds integrations. Now we see the 

generalization from integer to real number on number line as follows: 

𝑥𝑛  = 𝑥.  𝑥.  𝑥 … .  𝑥,                               𝑥 𝑖𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑛 𝑡𝑖𝑚𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝑛!   =   1. 2. 3 … . 𝑛 (𝑛 − 1),                𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  
𝑛! = 𝑛. (𝑛 − 1)! =  𝛤(𝑛 + 1)  = 𝑛. 𝛤𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑟𝑒𝑎𝑙 
The above result shows that the generalization from integer to non-integer, so in general we are 

making number line.  

The fractional calculus can be understood precisely by knowing some of the simple mathematical 

functions which are used in fractional calculus or in other words these functions are the basic 

functions for the theory of fractional calculus. These have been discussed in the following 

subsections. 

 

2. Functions Used in Fractional Calculus 
 

In this section our aim is to discuss a number of functions which are useful in providing the 

solutions to the problems of fractional calculus. R.K. Shukla and P. Sapra (2019) recently published 
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a paper on “Fractional Calculus and its Applications for scientific professionals: A literature 

review. In this paper the authors had discussed in details about the main functions, properties and 

applications of the fractional calculus. 

2.1 The Gamma Function  

 

This function is the base function or main function. The Gamma function generalizes the factorial 

function used in multiple differentiation and repeated integrations in integer order calculus. Euler’s 

Gamma function is defined as follows: 

𝛤𝑧 = ∫ 𝑒−𝑡 𝑡𝑧−1 𝑑𝑡
∞

0

 

Here considering 𝑧 as real number. So the above result implies that the Gamma function is defined 

for positive real values of 𝑧. 

Some standard results of the Gamma function are as follows: 

𝛤1 = 1, 𝛤
1

2
= √𝜋 

𝛤(𝑧 + 1) = 𝑧𝛤𝑧 

𝛤2 = 1𝛤1 = 1 = 1! 
𝛤3 = 2𝛤2 = 2 = 2! 
𝛤4 = 3𝛤3 = 6 = 3! 
… … … … … … … … …. 

𝛤(𝑛 + 1) = 𝑛𝛤𝑛 = 𝑛(𝑛 − 1)! = 𝑛! 
The above result is valid for  the positive values of 𝑧. Apart from the above results, the Gamma 

function has another important results that this function has simple poles at 𝑧 = 0, −1, −2, −3, … 

 The proof is explained on page no. 20 &21 of Shantanu Das (Das,2008). 

 

2.2 Mittag-Leffer Function of One-Parameter 

 

 In1903, Mittag-Leffer introduced the one-parameter function and it is defined as follows: 

𝐸𝛼(𝑧) = ∑
𝑧𝑟

𝛤(𝛼𝑟 + 1)

∞

𝑟=0

 

Or 

𝐸𝛼(𝑧) = 1 +  
𝑧

𝛤(𝛼 + 1)
+

𝑧2

𝛤(2𝛼 + 1)
+ ⋯ 

 

2.3  Mittag-Leffer Functions of Two-Parameter 

 

R.P. Agarwal and Erdelyi introduced the two-parameter Mittag-Leffer functions during 1953-1954. 

This function is defined as follows: 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑟

𝛤(𝛼𝑟 + 𝛽)

∞

𝑟=0

  ,    𝛼 > 0, 𝛽 > 0 

One –Parameter Mittag-Leffer function can be obtain by taking 𝛽 = 1, i.e.  

: 

𝐸𝛼,1(𝑧) = ∑
𝑧𝑟

𝛤(𝛼𝑟 + 1)
= 

∞

𝑟=0

𝐸𝛼(𝑧) 
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4 
 

Exponential function (𝑒𝑧) plays an important role in conventional calculus i.e. integer order 

calculus equations. Similarly, the Mittag-Leffer functions plays important role in the fractional 

order calculus.  

 

2.4 The Agarwal Function 

 

This function is defined as follows: 

𝐸𝛼,𝛽 (𝑡) = ∑
𝑡

(
𝛽−1

𝛼
 +𝑚)

𝛤(𝛼𝑚 + 𝛽)

∞

𝑚=0

 

In the fractional order system theory, the Agarwal function is very much useful because of its 

Laplace transform, it was obtained by Agarwal i.e. 

𝐿{𝐸𝛼,𝛽(𝑡𝛼)  =  
𝑠𝛼−𝛽

𝑠𝛼 − 1
 

 

 In addition to this, R.P. Agarwal has generalized the Mittag-Leffer function in 1953. 

 

2.5 The Rovotnov-Hartley Function  

 

This function is defined as follows:  

𝐹𝑞(−𝑎, 𝑡) = 𝑡𝑞−1 ∑
(−𝑎)𝑛𝑡𝑛𝑞

𝛤𝑞(𝑛 + 1)
 ,      𝑞 > 0

∞

𝑛=0
 

This function was introduced by Robotnov and Hartley in 1988. The direct solution of the 

fundamental linear fractional order differential equations is affected by this function. One of the 

important parts of this function is the power and simplicity of its Laplace transform, particularly  

ℒ{𝐹𝑞(𝑎, 𝑡)} =
1

𝑠𝑞 − 1
 ,           𝑞 > 0 

2.6 The Miller-Ross’ Function 

 

In the year 1993, Miller and Ross introduced a function as the basis of the solution of the fractional 

order initial value problem. The function is defined as the 𝑣𝑡ℎ integral of the exponential function, 

which is in the following form (Miller and Ross,1993). 

𝐸𝑡(𝑣, 𝑎) =
𝑑−𝑣

𝑑𝑡−𝑣
= 𝑡𝑣 ∑

(𝑎𝑡)𝑘

𝛤(𝑣 + 𝑘 + 1)
= 𝑡𝑣  𝑒𝑎𝑡 𝛾∗(𝑣, 𝑎𝑡),

∞

𝑘=0

 

where  𝛾∗(𝑣, 𝑎𝑡) is the incomplete gamma function. The incomplete Gamma function is a closely 

related function defined as  

𝛾∗(𝑣, 𝑡) =
𝑡−𝑣

𝛤𝑣
  ∫ 𝑒−𝑥 𝑥𝑣−1 𝑑𝑥,   𝑣 > 0

𝑡

0

 

The Laplace transform of the function can be written as 

ℒ{𝐸𝑡(𝑣, 𝑎)} =
𝑠−𝑣

𝑠 − 𝑎
 ,    𝑅𝑒(𝑣) > 1. 

This function 𝐸𝑡(𝑣, 𝑎) is closely related to incomplete Gamma and Mittag-Leffer functions. So, it 

is defined as  

𝐸𝑡(𝑣, 𝑎) = 𝑡𝑣  𝑒𝑎𝑡 𝛾∗(𝑣, 𝑡) 
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2.7 The Generalized 𝑹 and 𝑮 Function 

 

 In the analysis of fractional order differential equations, this function has great importance. This 

function is defined as follows: 

𝑅𝑞,𝑣[𝑎, 𝑡, 𝑐] = ∑
(𝑎)𝑛(𝑡−𝑐)(𝑛+1)𝑞−1−𝑣

𝛤{𝑞(𝑛+1)−𝑣}
∞
𝑛=0 , 

where 𝑡 is independent variable and 𝑐 is the lower limit of fractional differintegration. Our interest 

in this function will be for the solution of fractional differential equations for the range of 𝑡 > 𝑐. 
The more compact notation is as follows: 

𝑅𝑞,𝑣[𝑎, 𝑡 − 𝑐] = ∑
(𝑎)𝑛(𝑡−𝑐)(𝑛+1)𝑞−1−𝑣

𝛤{𝑞(𝑛+1)−𝑣}
∞
𝑛=0  

It is useful, particularly when 𝑐 = 0. 

 

2.8 The Wright Function 

 

This function is defined as follows:  

𝑊(𝑥; 𝛼, 𝛽) = ∑
𝑥𝑟

𝛤(𝛼𝑟+𝛽) 𝑟!
 ∞

𝑟=0   ,      𝛼 > 0,   𝛽 > 0   

where 𝑥 ∈ ℝ and 𝛼, 𝛽 ∈ ℂ. 

 

2.9 The Mainardi Function 

 

This function is defined as follows: 

𝑊(−𝑥; −𝛼, 1 − 𝛼) =  ∑
(−1)𝑟

𝛤(𝛼𝑟+𝛽)
 
𝑥𝑟

𝑟!
∞
𝑟=0   ,      𝛼 > 0 

Mainardi function is also denoted by 𝑀(𝑥; 𝛼) 

 

3. The Fractional Integral 
 

The following identities follow from the definition of Mittag-Leffer function of two parameters 

which is given in the subsection 2.3 

𝐸1,1(𝑧) = ∑
𝑧𝑟

𝛤(𝑟 + 1)
 

∞

𝑟=0

 = ∑
𝑧𝑟

𝑟!
 =  𝑒𝑧

∞

𝑟=0

 

𝐸1,2(𝑧) = ∑
𝑧𝑟

𝛤(𝑟 + 2)
 

∞

𝑟=0

 = ∑
𝑧𝑟

(𝑟 + 1)!
 =  

1

𝑧
∑

𝑧𝑟+1

(𝑟 + 1)!
 

∞

𝑟=0

=
𝑒𝑧 − 1

𝑧

∞

𝑟=0

 

In this way we can write, the most general form of the above results as: 

𝐸1,𝑛(𝑧) =
1

𝑧𝑛−1
 (𝑒𝑧 − ∑

𝑧𝑟

𝑟!

∞

𝑟=0

) 

Number of important identities can be derived but it is up to reader which identity they want.  

The Laplace transform technique is very much required for the solution of fractional differintegrals 

and many authors used this technique. The Laplace transform of a function  𝑓(𝑡) can be written as: 

𝐿{𝑓(𝑡)} =  ∫ 𝑒−𝑠𝑡  𝑓(𝑡)𝑑𝑡
∞

0
 = 𝐹(𝑠)       (1) 

There are number of important properties of Laplace transform but here we have mentioned only 

two properties which are useful for our case. The first one is the Laplace transform of the derivative 

of order 𝑛 i.e. 

𝐿{𝑓𝑛(𝑡)} =  𝑠𝑛 𝐹(𝑠) −  𝑠𝑛−1 𝑓(0) − 𝑠𝑛−2 𝑓′(0) − ⋯ − 𝑓𝑛−1(0) 
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The result (24) shows that  1 2 𝑡ℎ⁄  order derivative of the constant  function is not zero. 

 

Example 5.3.2 

 

To find the fractional derivative of  𝑒𝑎𝑥 (𝑜𝑟 𝐷𝛼 (𝑒𝑎𝑥)) of order 𝛼, where 0 < 𝛼 < 1. 

We are applying the formula (22) instead of (23) because (22) is more suitable in this case. So we 

get the following:  

𝐷𝛼𝑒𝑎𝑥 = 𝐷1{𝐷−𝛼𝑒𝑎𝑥 } 
Using (18), then we get 

𝐷𝛼𝑒𝑎𝑥 = 𝐷1{𝑥𝛼𝐸1,𝛼+1(𝑎𝑥) } 

Now using the definition of Mittag-Leffer functions (2.1) & (2.2), we get the following result 

𝐷𝛼𝑒𝑎𝑥 = 𝑥−𝛼𝐸1,−𝛼+1(𝑎𝑥) . 
 

6. Recent Work 
 

In year 2019, G. Sales Teodoro, J.A. Tenreiro Machodo and Edmundo Capelas de Oliveira have 

published their work on “A review of definitions of fractional derivatives and other operators” 

(Sales Teodoro et al.,2019). In this paper authors have reviewed the fractional derivatives 

definitions and operators used in it and it has been found that the two popular approaches i.e. 

Riemann-Liouville and Caputo are the most fitted definitions for the fractional derivatives. A 

number of books and research papers have been published recently and in this year, Edmundo 

Capelas de Oliveira has published a book “Solved Exercises in Fractional Calculus, Springer 

Nature Switzerland AG, 2019.This book has covered latest development in the field of fractional 

calculus and its applications and also given the historical survey from 1695 to 2019 (Capelas de 

Oliveira, 2019). 

  

7. Conclusion 
   

In this paper we discussed the main functions, properties, standard results for the fractional integrals 

and derivatives. We have seen that how some mathematical functions like Gamma function, 

incomplete Gamma function and Beta function have played important role in finding the fractional 

integrals and derivatives. We also discussed number of functions like Mittag-Leffer functions of 

one and two parameters, Agarwal function, etc. As we are aware that a number of definitions are 

available for the fractional integrals and derivatives but the two main or most popular definitions 

are Riemann-Liouville and Caputo. In Example 5.1.1, we have established an important result by 

equation (17) and this equation helps us to find out the fractional integral of a constant function and 

it is found to be not zero in general. In (24), we have seen that the 1 2𝑡ℎ⁄   order derivative of the 

constant function is not zero in general where as in differential calculus of positive integer, the 

derivative of the constant function is always zero. Fractional calculus is such a field where many 

models are still need to be introduced and applied in real world applications in many areas of 

science and engineering and in this direction a research paper (Sun et al., 2018) entitled” A new 

collection of real world applications of fractional calculus in science and engineering” was 

published. 
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